

AM of High Temperature Materials for Harsh Environments

Michael Kirka
Acting Group Leader
Deposition Sciences and Technology Group
Materials Science & Technology Division
Manufacturing Demonstration Facility
Oak Ridge National Laboratory

November 21st, 2019

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Research was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE- AC05-00OR22725 with UT-Battelle, LLC.

Overview

- Motivation
 - Q1: Why do we need additive manufacturing (AM)?
 - Q2: What are the physical processes, are they new?
 - Q3: Why is it relevant for superalloys?
- Challenges: Defects & Microstructural Heterogeneities
- Current Directions: Modeling, Make, and Measuring
- Future Directions & Opportunities:
 - Sire-Specific Microstructure Control
 - Refractory Alloys for Harsh Conditions Designed for AM
- Summary

Q1: By providing design flexibility, Additive Manufacturing is considered as the Renaissance of manufacturing

Embedded Electronics

- 25-lbs total weight, 60" long arm
- Neutrally buoyant without floatation
- Fluid passages integrated into structure
- 7 degrees of freedom with 180 degree rotation at each joint

- Lower Cost Aerospace Brackets
- Decrease By to Fly Ratio Down to ~ 1.5:1
- Decreased Manufacturing Cost by Over 50%
- Achieved ASTM Standards for static properties

Today: Additive Manufacturing of Nickel Superalloys

Q2: What are the physical processes during AM?

- Complex Geometries
- Energy Deposition
- Melting & Powder Addition
- Evaporation & Condensation
- Heat & Mass Transfer
- Solidification
- Solid-State Phase Transformation
- Repeated Heating and Cooling – Thermal Gyrations

Q3: Can we use AM to arrive at complex geometries and site-specific properties?

 In early 1986, GE researchers invented dual heat treatment to arrive at spatial grain structure control.

Physical processes are similar to Welding & Joining, but with complex boundary conditions...

Design Process Process Geometrical Microstructure Qualification Selection Controls Conformity Control & Standards

Validation in Computation Weld Mechanics

Challenges

Most Desirable Materials For Extreme and Harsh Environments are Difficult to Process: Materials Susceptible to Cracking

Weldability of Ni-base Superalloys

Most Desirable Materials For Extreme and Harsh Environments are Difficult to Process: Process, Geometry, and Material Linked

Crack Formation in Mar-M247

Key parameter: Movement of the weld pool, rather than the power source!

Current Directions: Inconel 738 Airfoil Case Study

<u>Make</u>

Model

Enabling Scan Path Optimization through Computational Modeling

- Temporal and spatial distribution of cracking tendency
 - Peak tensile stress locations coincided with cracks
 - Geometry and default scan pattern interaction

Enabling Scan Path Optimization through Computational Modeling

Standard Strategy

Alternative Optimized Strategy

Make <u>Model</u> → <u>Make</u>

Manufacturing of Defect Prone Ni-base Superalloys Through by EBM

Material: Inconel 738LC (Ni-284-1)

Cr	Co	Ti	Al	Та	W	Nb	Мо
16	8.5	3.45	3.45	1.75	2.6	0.85	1.75

1600lbs x 4 powder uses/reuses

What are the Available Data Streams

Driving the Next Materials Revolution

Creating a Framework for Coupling Data Analytics with Advanced Manufacturing

Data Management & Tracking

Signal Processing

Computer Vision & Image Processing

n-D Data
Visualization

Modeling & Simulation

Data Analytics & Machine Learning

Process
Optimization

Certification, Verification & Validation

Al for CT Reconstruction and Defect Detection

Fuse Intent and Sensor Data to Begin Creating Digital Twins

Merging and Managing of Data Streams

Merging and Managing of Data Streams

Opportunities: Data Driven Microstructures and Alloy Design

Data Driven Microstructure Development

Future of Data Driven Scan Strategies

AM of Refractory Metals for Extreme Environments

 Next-generation nuclear energy will require components from hard-to-manufacture refractories

Parameter Development

TCR

Integrating Materials Design with Process Optimization for Additive Manufacturing

Summary

- Physical Processes of AM: Many of the physics, heat and mass transfer, solidification and solid-state transformations are the same as welding and joining with complex boundary conditions.
- Challenges: Defect formation and microstructural heterogeneities are affected by interaction between geometry, process, and alloy chemistry!
- Current Directions: Fusion based AM has been demonstrated as a reliable technology for fabricating non-weldable Ni-base superalloys for critical rotating applications.
- Opportunities: AM allows for site-specific control of microstructure in Ni-base alloys through thermal management, phase stability and kinetics, even in complex geometries. Extendable to refractory materials

